
 1

The History of the PLC
as told to Howard Hendricks by Dick Morley

The following are some fables associated with the first ten years of the programmable controller
business. These Fables may or may not have a basis of truth, but in general, they are the best that
my Alzheimer-plagued memory can do at the moment. As has been often in other articles and
reports, the startup of Modicon and the programmable controller industry as a whole is well
documented. The programmable controller was detailed on New Year's Day, 1968, and from
hence till now, a slow steady growth has allowed the manufacturing and process control
industries to take advantage of applications-oriented software.

The early days however, were not as straightforward nor as simple. We had some real problems
in the early days of convincing people that a box of software, albeit cased in cast iron, could do
the same thing as 50 feet of cabinets, associated relays and wiring. The process was indeed
difficult, and deserves some of the stories that I hope the reader will be regaled with as he
proceeds onward through the tortuous swamp of my mind.

One of my earliest recommendations was that the programmable controller, according to my
own system architecture specification, did not need to go fast because I felt as though speed was
not a criteria because it would go as fast as we needed it to. The initial machine, which was never
delivered, only had 125 words of memory, and speed was not a criteria as mentioned earlier. You
can imagine what happened! First, we immediately ran out of memory, and second, the machine
was much too slow to perform any function anywhere near the relay response time. Relay
response times exist on the order of 1/60th of a second, and the topology formed by many
cabinets full of relays transformed to code is significantly more than 125 words. We expanded
the memory to 1K and thence to 4K. At 4K, it stood the test of time for quite a while. Initially,
marketing and memory sizes were sold in 1K, 2K, 3K, (?) and 4K. the 3K was obviously the 4K
version with constrained address so that field expansion to 4K could easily be done.

The question of speed, in part, was part of the early designs. No interrupts were necessary
because the external signal conditions were directly written onto memory without any
supervisory requirements or "operating system of the conventional type. This allowed the
processor to pay attention to solving logic rather than housekeeping the I/O. As a result, of
course, the processor had to have significantly more processing power than normally associated
with this size computer; and secondly, the system had to be made to run fast.

We increased the memory size, as mentioned above, but to get it to run fast, we had to break up
the machine into three distinct components. Initially, the programmable controller was conceived
of a processor board and a memory, and that the algorithmic and logical manipulation would be
done in software. This approach was painfully slow, both on the generic "store bought
computers, and other items.

We did, however, manage to substantially speed up the machine by making a third major
component. This was called the logic solver. A logic solver board solved the dominant
algorithms associated with solving ladder logic without the intervention and classical software

 2

approach of general-purpose processing. This meant that we ended up with three boards;
memory, logic solver and processor. This single step allowed us to get the speed we needed in
this application-specific computer to solve the perceptually simple problem of several cabinets
full of relay wiring.

We had also assumed a modular approach to the programmable controller. In act, the name
Modicon means MOdular DIgital CONtroller. The modularity, however, was soon abandoned
because, as everyone knows, open architectures are no good. We instead had the marketing
premise that a large footprint would contain within it the sets of problems we wished to solve.
This meant that a buyer of programmable controllers could buy large numbers of the same units,
and the software and hardware would be identical across a broad spectrum of applications in his
factory. Service, maintenance and total life cost would be substantially lower than the perceived
lower cost of an open architecture and modular expansion. Although at first, a supporter of the
open architecture modular expansion, I soon became convinced by the marketplace, but this was
folly.

We took one of our early units which was aimed at the machine tool industry because of my
Bedford Associates consulting background, up to one of the early requesters of this equipment.
This particular early requester was Byrant Chuck and Grinder in Springfield, Vermont. We took
the machine up there, and it was heavy. This was the 084. The 084 was in the trunk of my old
Pontiac, and since we needed help carrying it in, requested some of the people at Bryant to help
us. We went out and opened the hood, and the first comment made by an outside viewer of the
programmable controller said, "Thank God it’s not another pastel colored piece of sheet metal.

We can hypothesize from this particular comment that the ruggedness of the visual design was
pleasing to him, and being human (as opposed to Martian), assumed that this same attitude went
deep inside the construction of the machine in both the hardware and software. Indeed, this was
the case, and the machine as a result, was built rugged, had no ON/OFF switch, had no fans, did
not make any noise and had no wear out system.

To reminisce for a moment---in selecting the cores for the first memories, which in itself was a
revolutionary step, we selected these cores and we applied Shannon’s Law. Shannon’s Law
assumes that the signal-to-noise ratio is what makes signals good or bad. There are several ways
to get the power from the signal-to-noise ratio; one is to code heavily, be triply redundant, and
use lots and lots of error checking. There is another way, which is perfectly compatible with
theory, which is to use lots of signal power in another domain. A nice switch, a car battery and a
D-rated light bulb will work fairly well over a long time period.

Therefore, what we did was rather than going error checking, triply redundant and stuff, we got,
and searched for and found high energy, large ferrite core memories that had lots on energy per
bit. We still make the same assumption today. The energy per bit is extremely important---as
Shannon’s theory said in his most famous 1948 paper, that the signal noise to power noise is
what gives you transmission. the way we got signal power was to increase the energy per bit.
This we felt was far more important than getting the energy per bit increased by means of doubly
transmitting it. But I digress. Bryant Chuck and Grinder put it in, and liked the equipment so
much that they never bought one. They in turn thought it was a good idea, and as many did at
that time, tried to evolve their own.

One of our first major customers, however, was Landis in Landis, PA. We flew the equipment
down in a private aircraft, and with apprehension because we were late (as usual), brought the
equipment into Landis. In doing so, we tripped over the threshold. The equipment went KA-
RASH onto the floor! Without much chagrin, we picked the equipment up, trundled it in. hooked
it up, and low and behold, it worked quite well.

 3

Now, Landis was pleased and surprised. They were pleased because it worked, but they were
most pleasantly surprised---not because the equipment worked---but because the guys from
Modicon fully expected the equipment to work in spite of it being dropped. In other words, the
people from Modicon weren’t nervous about the fact that it fell on the floor over the threshold.

Landis subsequently took and wrapped welding coils of wire around the machine to induce
electro-magnetic noise to see if they could make it fail. We had them there! We used to test the
programmable controllers with a Teslar coil that struck a quarter inch to half-inch arch anywhere
on the system, and the programmable controller still had to continue to run. There was
significant strangeness with respect to the programmable controller. For example, it had no
ON/OFF switch. It had no means to load software. It had no fans. It ran cool. It could survive
bad, physical and thermal environments. It was not computer industry standard. There were
many things that were most difficult in the acceptance of the programmable controller, and early
acceptance was most difficult indeed.

Our sales in the first four years were abysmal. Early innovators such as Landers and General
Motors were, of course, heroes to our eyes, but they would buy small numbers of units and then
test them in the field before they committed themselves later on. We had one customer in the
utilities business that took them approximately six to seven years to make a decision to but the
first one.

We never really sold any programmable controllers into the intended market which was machine
tool control such as lathes, grinders and stuff, but we did, as luck would have it, stumble across
the transfer line market which was and still is the mainstay, long-term market for the application
of programmable controllers. Discreet parts manufacturing in an automatic environment, i.e.,
mass production, continues to be, and probably will be for the future, the mainstay of the
programmable controller industry.

Some of the more interesting stories center around the personalities and experiences as opposed
to the programmable controller. Modicon’s third president (or fourth, if you count my two-week
stint) was Don Kramer. When Don Kramer was chosen as president, we decided to go out and
celebrate at the Lanum Club in Andover. At the time, we felt we should celebrate over both
martinis and food. As we were leaving the shop for the Lanum Club, Don made the aside
comment that "the place is dingy and needs a paint job. As we were leaving, I mentioned to Don
that as president you have to change what you say, and not be very open---you have to be a little
careful about what you say because employees, customers, and boards of directors tend to take
what you say as truth. Rather than listen to the meaning, they listen to the literal statements, and
one must be careful. We went over to the Lanum Club and had a nice glowing two hours of
discussion, food, and drink. Coming back, as we entered the Modicon lobby, we noticed that
there was scaffolding about and people were painting. We went over and asked Lou as to why
these people are painting since, at the time, we don’t have any money. Who ordered this paint
job? And Lou looked Don Kramer straight in the eye, and said, "Why you did, Mr. Kramer. Nuff
said.

As has been mentioned many times, your author, that’s me---Dick Morley---is supposed to be
the inventor of the programmable controller. This is at best, partially true. The thing that made
the Modicon Company and the programmable controller really take off was not the 084, but the
184. The 184 was done in design cycle by Michael Greenberg, one of the best engineers I have
ever met. He, and Lee Rousseau, president and marketeer, came up with a specification and a
design that revolutionized the automation business. they built the 184 over the objections of
yours truly. I was a purist and felt that all those bells and whistles and stuff weren’t "pure, and
somehow they were contaminating my "glorious design, Dead wrong again, Morley! they were
specifically right on! the 184 was a walloping success, and it---not the 084, not the invention of

 4

the programmable controller---but a product designed to meet the needs of the marketplace and
the customer, called the 184, took off and made Modicon and the programmable controller the
company and industry it is today. My compliments to the two chefs---Lee Rousseau and Mike
Greenberg.

The issue of quality in programmable controllers is a story that is normally taken for granted.
The gentle reader must remember that our engineering people came from the computer industry
where reliability in those days was a phantom---a phantom of design, a phantom of cost. People
felt that reliability was something other people did, and that if we only could deliver faster
computers, even if they didn’t work, everything would be fine.

When the programmable controller was designed, it was designed in to be reliable. We used lots
of energy per information bit by utilizing D-rated components, large memory ferrite cores,
relatively stable and large etchings on printed circuit boards, totally enclosed systems and
conductive cooling. No fans were used, and outside air was not allowed to enter the system for
fear of contamination and corrosion. Mentally, we had imagined the programmable controller
being underneath a truck, in the open, and being driven around---driven around in Texas, driven
around in Alaska. Under those circumstances, we anted it to survive. The other requirement was
that it stood on a pole helping run an utility or a microwave station which was not climate
controlled, and not serviced at all. Under those circumstances, would it work for the years that it
was intended to be? Could it be walled in? Could it be bolted in a system that was expected to
last 20 years?

The humorous side of this is though we did all those designs and very carefully tried to make this
system as intrinsically reliable as we could, not by redundancy, but by building well. In other
words, it was designed to be built, it was designed to be designed, and it was designed to be
reliable. We, however, as engineers, didn’t understand the accountants and manufacturing. those
two have their grail, shipments by the end of the month. As far as we could ascertain at the time,
shipments were made independent of quality and independent of whether or not the system ran.

In the early days of the programmable controller and Modicon, even though I wasn’t a direct
employee and an owner, I would give out my home phone number to many of our critical
customers so that if they had a problem, they could call me directly. Several calls indicated that
when we shipped near the end of the month, let's say October 34th, that the equipment would not
run; and secondly, when they opened the box and took the machine apart, cards were missing,
bolts were on the bottom of the cabinetry, and some of the cards were not fully inserted. In other
words, to make the end of the month was much more important than to deliver equipment that
ran. to put it mildly, we were pissed! How do we as engineers maintain quality without continual
surveillance which is most difficult for the design and entrepreneurial mind set. What we did was
specify and design "blue boxes. These were cabinetries that the system had to operate in and run
continuously for a minimum of 24 hours, under load, and under varying conditions. The box was
built out of plywood, but its primary intention was to heat cycle the programmable controller
under various input/output loads. We also ran, as a specification, that a Tesla coil was to be used
on the programmable controller, and that vibration and thumping with a hammer (rubber) would
be part of the specification.

This may seem unscientific to many of you, but let us assume that you try to get your equipment
to run while somebody purposely tries to destroy it with a rubber hammer or spark coil that he
can put anywhere on the system. Remember, your intention is to make the processor stop. That
combination significantly depressed those monthly shipments during the first period. As a result
of that, however, the message got through. Not only did we build ovens and tests, and pay
attention to heat and spark and RF emissions, we would run the system continuously even in the
shipping crate to get the maximum number of pre-custom hours we could. It was important to us

 5

that we found the mistakes and not the customer and his secondary customer.

The language itself, ladder lister, bears some discussion. This particular language was not the
invention of Modicon. We hypothesize that the language is very old, and originated in Germany
to describe relay circuitry. If one looks at ladder lister, it has been our technical community for
so long, we somehow think those little symboligies actually look like relays. In fact, it,s a
mnemonic form of rule-based language, very modern and very high level, but designed in a
Darwinian fashion over a period of many decades.

The ladder logic construct, "If... Then... is a very powerful construct used today in expert
systems and other rule-based languages. The symbology, allowing normally open and normally
closed situations as well as parallel and serial representation, was used for many decades before
the invention of the programmable controller. I have worked on machines where the number of
C-size and D-size prints were hung in special racks, and would be up to three feet thick worth of
documentation on those drawing sets.

The name ladder comes from the fact that on the right-hand of the drawing is one power rail and
the left-hand side is the other power rail; and in between in a horizontal fashion, is the statement
or sequential connection of logical elements which we call relays or relay logic. The initial 084
had only logic in its functionality, and as a result, was marginal. In other words, all we did was
replace relays rather than enhance the functionality by a factor of ten which is the entrepreneurial
rule. Immediately, of course, based on customer response and our own frustrations, we put thing
in the ladder listing language such as addition, multiplication, subtraction, and other
functionalities that went far beyond relay capability and entered the realm of mathematics and
set theory. This was still not sufficient, however, and we needed some way to make a "call to a
"subroutine using ladder lister symbology and representation.

A software engineer, Chuck Schelberg, and myself were in the conference room one day trying
to ascertain how we could make a generic call to functionalities that far exceeded the relay
symbology and representation, and came up with the "DX function. This function was a block
function that would be an element on the ladder logic representation that could perform many
functionalities including arrays, motor drive functions, servo functions, extended mathematical
functions, PID loops, ad nauseam. We felt there would be an occasional representation and use
of these functionalities, and that not much had to be done to the programmable controller other
than to modify the software. Wrong again!

The first customer that took delivery of a programmable controller utilizing the DX function, had
a capability to be predictable and operate in real time. The RUN light went out, and the time to
execute a scan or complete transformation of the ladder logic went far beyond the time
allowable. Every single line had a DX function on it. Again we learned that when you enhance
functionality, people use it all. I have never designed a computer that had too much memory. I,ve
only designed computers that have too little memory. The same thing applies to any other
functionality. Conventional wisdom seems to think that price/performance depends on only one
thing---price---when, in fact, my experience has been that the customer cares little about price.

This price/performance tirade being over, one of the lessons we learned is that the customer
wants functionality over the entire life cycle cost installation of the job. the customer also wants
ease of installation, to have some fun, and to be proud of the work he does. After he’s finished,
he never wants to come back.. The equipment should work as installed and as based. At one
time, the programmable controller meantime before failure in the field was 50,000 hours. This is
far in excess of almost any other type of electronic or control equipment.

The concept of languages and high-level languages is important. The programmable controller,

 6

as it evolved, began to request more and more power, and more and more memory. The
memories continually went up as well as power. It is estimated that at one time, in the mid-
1970s, that the programmable controller had the equivalent of two MIPS processor and 128
kilobytes of memory, which at that time was a significantly powered minicomputer capability.
Why? High-level languages require power to run them. If we take the equivalent of the ladder
lister statement "If... Then..., the high-level language as represented here, requires a substantial
amount of interpretive compiler, if you will, generation of underlying code. In other words, this
statement spawns significant underlying code that must be run quickly, reliably, and contain
within it, all aspects of resource allocation and operations resource. The higher level the
language, the more powerful the processor apparently has to be in order to run the language.
Ladder lister is a high-level rule-based language which, until now, we haven’t talked much about
in these terms. Our customers treated the programmable controller as a box of relays, and well
they should. Language theory is neither necessary not desirable for most of the customers to
know. The customers, instead, understand their problem, and are indeed much smarter than the
design engineers because the dimensions of their problem far exceed the relatively simple
problem of designing a computer software system and language. Ladder lister requires high
performance which is one of the reasons it has difficulty running on the personal computer even
of today.

 References

Send mail to rmi.info@barn.org for more information.
Please send mail to webmaster@barn.org regarding web site structure.
Copyright © 1996-1999 R.Morley Inc. All Rights Reserved

R. Morley Incorporated
586-3 Nashua Street, Suite 56
Milford, NH 03055-4992 USA
Tel: 603-878-4365 FAX: 603-878-4385

